Explore real-world AI code examples with full implementations. Copy, download, and learn from production-ready code snippets in multiple programming languages.
Build an intelligent code completion system using OpenAI Codex API
import { Configuration, OpenAIApi } from 'openai'
const configuration = new Configuration({
apiKey: process.env.OPENAI_API_KEY,
})
const openai = new OpenAIApi(configuration)
export async function getCodeCompletion(prompt: string, language: string) {
try {
const response = await openai.createCompletion({
model: 'code-davinci-002',
prompt: `// ${language} code completion
${prompt}`,
max_tokens: 150,
temperature: 0.2,
stop: ['\n\n']
})
return response.data.choices[0]?.text?.trim() || ''
} catch (error) {
console.error('Code completion error:', error)
throw new Error('Failed to generate code completion')
}
}
// Usage example
async function example() {
const prompt = 'function calculateFibonacci(n) {'
const completion = await getCodeCompletion(prompt, 'JavaScript')
console.log('Completed code:', prompt + completion)
}
IDE Extensions, Code Editors, Developer Tools
Create an AI-powered code review system that analyzes code quality and suggests improvements
import openai
import ast
import re
from typing import List, Dict, Any
class AICodeReviewer:
def __init__(self, api_key: str):
openai.api_key = api_key
def analyze_code(self, code: str, language: str = 'python') -> Dict[str, Any]:
"""Analyze code and provide AI-powered review"""
# Basic syntax check
syntax_issues = self._check_syntax(code, language)
# AI-powered analysis
ai_review = self._get_ai_review(code, language)
# Combine results
return {
'syntax_issues': syntax_issues,
'ai_suggestions': ai_review,
'overall_score': self._calculate_score(syntax_issues, ai_review)
}
def _check_syntax(self, code: str, language: str) -> List[str]:
"""Check for basic syntax issues"""
issues = []
if language.lower() == 'python':
try:
ast.parse(code)
except SyntaxError as e:
issues.append(f"Syntax Error: {e.msg} at line {e.lineno}")
return issues
def _get_ai_review(self, code: str, language: str) -> Dict[str, Any]:
"""Get AI-powered code review"""
prompt = f"""
Review this {language} code and provide suggestions for:
1. Code quality and best practices
2. Performance optimizations
3. Security considerations
4. Readability improvements
Code:
{code}
Provide specific, actionable feedback:
"""
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
max_tokens=500,
temperature=0.3
)
return {
'suggestions': response.choices[0].message.content,
'confidence': 0.85
}
except Exception as e:
return {
'suggestions': f"AI review failed: {str(e)}",
'confidence': 0.0
}
def _calculate_score(self, syntax_issues: List[str], ai_review: Dict[str, Any]) -> float:
"""Calculate overall code quality score"""
base_score = 100.0
# Deduct points for syntax issues
base_score -= len(syntax_issues) * 20
# Adjust based on AI confidence
base_score *= ai_review.get('confidence', 0.5)
return max(0.0, min(100.0, base_score))
# Usage example
reviewer = AICodeReviewer('your-openai-api-key')
result = reviewer.analyze_code('''
def fibonacci(n):
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
''', 'python')
print(f"Code Score: {result['overall_score']:.1f}/100")
CI/CD Pipelines, Code Quality Tools, Development Workflows
Generate comprehensive documentation from code using AI analysis
const { Configuration, OpenAIApi } = require('openai')
const fs = require('fs').promises
class DocumentationGenerator {
constructor(apiKey) {
const configuration = new Configuration({ apiKey })
this.openai = new OpenAIApi(configuration)
}
async generateDocumentation(code, options = {}) {
const {
language = 'javascript',
style = 'comprehensive',
includeExamples = true
} = options
try {
const prompt = this.buildPrompt(code, language, style, includeExamples)
const response = await this.openai.createChatCompletion({
model: 'gpt-3.5-turbo',
messages: [{ role: 'user', content: prompt }],
max_tokens: 1000,
temperature: 0.3
})
const documentation = response.data.choices[0].message.content
return this.formatDocumentation(documentation, language)
} catch (error) {
throw new Error(`Documentation generation failed: ${error.message}`)
}
}
buildPrompt(code, language, style, includeExamples) {
return `Generate ${style} documentation for this ${language} code:
${code}
Please include:
- Function/class descriptions
- Parameter explanations
- Return value descriptions
- Usage examples: ${includeExamples ? 'Yes' : 'No'}
- Best practices and notes
Format as clean, readable documentation.`
}
formatDocumentation(doc, language) {
return {
content: doc,
language,
generatedAt: new Date().toISOString(),
sections: this.extractSections(doc)
}
}
extractSections(doc) {
const sections = []
const lines = doc.split('\n')
let currentSection = null
for (const line of lines) {
if (line.startsWith('#')) {
if (currentSection) sections.push(currentSection)
currentSection = { title: line.replace(/^#+\s*/, ''), content: [] }
} else if (currentSection && line.trim()) {
currentSection.content.push(line)
}
}
if (currentSection) sections.push(currentSection)
return sections
}
async saveDocumentation(documentation, filename) {
const content = `# Generated Documentation
Generated on: ${documentation.generatedAt}
Language: ${documentation.language}
${documentation.content}
`
await fs.writeFile(filename, content, 'utf8')
return filename
}
}
// Usage example
async function example() {
const generator = new DocumentationGenerator('your-openai-api-key')
const sampleCode = `
function calculateCompoundInterest(principal, rate, time, compound) {
const amount = principal * Math.pow((1 + rate / compound), compound * time)
return amount - principal
}
`
const docs = await generator.generateDocumentation(sampleCode, {
language: 'javascript',
style: 'comprehensive',
includeExamples: true
})
await generator.saveDocumentation(docs, 'api-docs.md')
console.log('Documentation generated successfully!')
}
API Documentation, Code Comments, Technical Writing
Automatically generate comprehensive unit tests using AI analysis
import { Configuration, OpenAIApi } from 'openai'
import * as fs from 'fs/promises'
interface TestCase {
name: string
input: any
expected: any
description: string
}
interface TestSuite {
functionName: string
testCases: TestCase[]
setupCode?: string
teardownCode?: string
}
class AITestGenerator {
private openai: OpenAIApi
constructor(apiKey: string) {
const configuration = new Configuration({ apiKey })
this.openai = new OpenAIApi(configuration)
}
async generateTests(
code: string,
framework: 'jest' | 'mocha' | 'vitest' = 'jest'
): Promise<string> {
try {
const analysis = await this.analyzeCode(code)
const testSuite = await this.generateTestSuite(code, analysis, framework)
return this.formatTestCode(testSuite, framework)
} catch (error) {
throw new Error(`Test generation failed: ${error.message}`)
}
}
private async analyzeCode(code: string): Promise<any> {
const prompt = `Analyze this code and identify:
1. Function name and parameters
2. Expected behavior and edge cases
3. Input/output types
4. Error conditions
5. Dependencies and side effects
Code:
${code}
Provide a structured analysis for test generation.`
const response = await this.openai.createChatCompletion({
model: 'gpt-4',
messages: [{ role: 'user', content: prompt }],
max_tokens: 800,
temperature: 0.2
})
return this.parseAnalysis(response.data.choices[0].message.content)
}
private async generateTestSuite(
code: string,
analysis: any,
framework: string
): Promise<TestSuite> {
const prompt = `Generate comprehensive ${framework} test cases for this code:
${code}
Based on this analysis:
${JSON.stringify(analysis, null, 2)}
Include:
- Happy path tests
- Edge cases
- Error conditions
- Boundary value tests
- Mock requirements
Return as structured JSON with test cases.`
const response = await this.openai.createChatCompletion({
model: 'gpt-4',
messages: [{ role: 'user', content: prompt }],
max_tokens: 1200,
temperature: 0.3
})
return JSON.parse(response.data.choices[0].message.content)
}
private formatTestCode(testSuite: TestSuite, framework: string): string {
const { functionName, testCases, setupCode, teardownCode } = testSuite
let testCode = `import { ${functionName} } from './${functionName}'
describe('${functionName}', () => {`
if (setupCode) {
testCode += `
beforeEach(() => {
${setupCode}
})`
}
testCases.forEach(testCase => {
testCode += `
test('${testCase.name}', () => {
// ${testCase.description}
const result = ${functionName}(${this.formatInput(testCase.input)})
expect(result).toEqual(${JSON.stringify(testCase.expected)})
})`
})
if (teardownCode) {
testCode += `
afterEach(() => {
${teardownCode}
})`
}
testCode += `
})
`
return testCode
}
private formatInput(input: any): string {
if (Array.isArray(input)) {
return JSON.stringify(input)
}
if (typeof input === 'string') {
return `'${input}'`
}
return String(input)
}
private parseAnalysis(content: string): any {
// Simple parsing - in production, use more robust parsing
try {
return JSON.parse(content)
} catch {
return { analysis: content }
}
}
async saveTests(testCode: string, filename: string): Promise<void> {
await fs.writeFile(filename, testCode, 'utf8')
}
}
// Usage example
async function example() {
const generator = new AITestGenerator('your-openai-api-key')
const sampleFunction = `
function validateEmail(email: string): boolean {
const emailRegex = /^[^\s@]+@[^\s@]+\.[^\s@]+$/
return emailRegex.test(email)
}
`
const tests = await generator.generateTests(sampleFunction, 'jest')
await generator.saveTests(tests, 'validateEmail.test.ts')
console.log('Tests generated successfully!')
console.log(tests)
}
Unit Testing, TDD, Quality Assurance, CI/CD